diffusions Documentation

Release 0.1

Stanislav Khrapov

Sep 05, 2017

Contents

1	General Affine Diffusions	1
2	Geometric Brownian Motion (GBM)	3
3	Vasicek	5
4	Cox-Ingersoll-Ross (CIR)	7
5	Heston	9
6	Central Tendency (CT)	11

General Affine Diffusions

A jump-diffusion process is a Markov process solving the stochastic differential equationd

$$Y_t = \mu \left(Y_t, \theta_0 \right) dt + \sigma \left(Y_t, \theta_0 \right) dW_t.$$

A discount-rate function $R: D \to \mathbb{R}$ is an affine function of the state

$$R\left(Y\right) = \rho_0 + \rho_1 \cdot Y,$$

for $\rho = (\rho_0, \rho_1) \in \mathbb{R} \times \mathbb{R}^N$.

The affine dependence of the drift and diffusion coefficients of Y are determined by coefficients (K, H) defined by:

$$\mu\left(Y\right) = K_0 + K_1 Y$$

for $K = (K_0, K_1) \in \mathbb{R}^N \times \mathbb{R}^{N \times N}$, and

$$\left[\sigma\left(Y\right)\sigma\left(Y\right)'\right]_{ij} = \left[H_0\right]_{ij} + \left[H_1\right]_{ij} \cdot Y,$$

for $H = (H_0, H_1) \in \mathbb{R}^{N \times N} \times \mathbb{R}^{N \times N \times N}$. Here

$$[H_1]_{ij} \cdot Y = \sum_{k=1}^{N} [H_1]_{ijk} Y_k$$

A characteristic $\chi = (K, H, \rho)$ captures both the distribution of Y as well as the effects of any discounting.

Geometric Brownian Motion (GBM)

Suppose that S_t evolves according to

$$\frac{dS_t}{S_t} = \mu dt + \sigma dW_t$$

In logs:

$$d\log S_t = \left(\mu - \frac{1}{2}\sigma^2\right)dt + \sigma dW_t$$

After integration on the interval [t, t + h]:

$$r_{t,h} = \log \frac{S_{t+h}}{S_t} = \left(\mu - \frac{1}{2}\sigma^2\right)h + \sigma\sqrt{h}\varepsilon_{t+h},$$

where $\varepsilon_t \sim N(0, 1)$.

chapter $\mathbf{3}$

Vasicek

Suppose that r_t evolves according to

 $dr_t = \kappa \left(\mu - r_t\right) dt + \eta dW_t.$

Cox-Ingersoll-Ross (CIR)

Suppose that r_t evolves according to

$$dr_t = \kappa \left(\mu - r_t\right) dt + \eta \sqrt{r_t} dW_t$$

Feller condition for positivity of the process is $\kappa \mu > \frac{1}{2}\eta^2$.

Heston

The model is

$$dp_t = \left(r + \left(\lambda_r - \frac{1}{2}\sigma_t^2\right)\right)dt + \sigma_t dW_t^r,$$

$$d\sigma_t^2 = \kappa \left(\mu - \sigma_t^2\right)dt + \eta \sigma_t dW_t^\sigma,$$

with $p_t = \log S_t$, and $Corr \left[dW_s^r, dW_s^\sigma \right] = \rho$, or in other words

$$W_t^{\sigma} = \rho W_t^r + \sqrt{1 - \rho^2} W_t^v.$$

Feller condition for positivity of the volatility process is $\kappa \mu > \frac{1}{2}\eta^2$.

Central Tendency (CT)

The model is

$$dp_t = \left(r + \left(\lambda - \frac{1}{2}\right)\sigma_t^2\right)dt + \sigma_t dW_t^r,$$

$$d\sigma_t^2 = \kappa_\sigma \left(v_t^2 - \sigma_t^2\right)dt + \eta_\sigma \sigma_t dW_t^\sigma,$$

$$dv_t^2 = \kappa_v \left(\mu - v_t^2\right)dt + \eta_v v_t dW_t^v,$$

with $p_t = \log S_t$, and $Corr\left[dW_s^r, dW_s^\sigma\right] = \rho$, or in other words $W_t^\sigma = \rho W_t^r + \sqrt{1 - \rho^2} W_t^v$. Also let $R\left(Y_t\right) = r$.